首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   105篇
  国内免费   83篇
测绘学   6篇
大气科学   1篇
地球物理   142篇
地质学   259篇
海洋学   7篇
天文学   2篇
综合类   3篇
自然地理   1篇
  2024年   1篇
  2023年   5篇
  2022年   3篇
  2021年   8篇
  2020年   9篇
  2019年   10篇
  2018年   9篇
  2017年   15篇
  2016年   6篇
  2015年   12篇
  2014年   17篇
  2013年   19篇
  2012年   16篇
  2011年   14篇
  2010年   4篇
  2009年   19篇
  2008年   16篇
  2007年   32篇
  2006年   28篇
  2005年   20篇
  2004年   37篇
  2003年   20篇
  2002年   12篇
  2001年   8篇
  2000年   12篇
  1999年   12篇
  1998年   7篇
  1997年   12篇
  1996年   6篇
  1995年   8篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1988年   3篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
  1978年   2篇
排序方式: 共有421条查询结果,搜索用时 46 毫秒
101.
由基底片麻岩(内核)、剥离断层(接合面)及滑覆层状岩系(外壳)构成的佛坪穹隆构造,从其岩石组成、早期的运动学特征、变质变形改造和同位素测年资料综合分析,表明佛坪穹隆可能形成于印支期的主造山期前,并受印支期主造山期褶皱变形和燕山期逆冲、走滑作用的叠加改造。它经历了中元古代—前印支期隆-滑构造形成阶段,而与造山后期变质核杂岩明显不同,在造山带构造演化中具有重要意义。隆-滑构造发生的深部背景是造山带岩石圈垂向加积增生作用。该穹隆突出而重要地参与了秦岭造山带的形成与演化,具有重要的大陆动力学意义。  相似文献   
102.
盆地演化与地球动力学旋回   总被引:7,自引:0,他引:7  
盆地演化受地球演化节律所制约,节律由多层次构成。地球动力学旋回主要有3个级序:(1)超级大陆旋回,主要由羽柱构造的地幔对流动力学所控制,产生超级大陆的裂解和拼合,形成全球性同步隆升与沉降的克拉通盆地;(2)地槽旋回或造山旋回,主要由板块构造的岩石圈运动学所控制,按威尔逊旋回进展,发育各类盆地和造山带,形成“区域性”穿时开合与“非对称”互补;(3)褶皱幕或裂陷幕,主要由地体构造与拆层作用几何学所控制,产生盆地内各种构造样式和沉积样式,形成地方性的穿时递进变形,发育幕式变形和幕式沉积作用等。  相似文献   
103.
The trace element composition of silicate inclusions in diamonds: a review   总被引:1,自引:0,他引:1  
On a global scale, peridotitic garnet inclusions in diamonds from the subcratonic lithosphere indicate an evolution from strongly sinusoidal REEN, typical for harzburgitic garnets, to mildly sinusoidal or “normal” patterns (positive slope from LREEN to MREEN, fairly flat MREEN–HREEN), typical for lherzolitic garnets. Using the Cr-number of garnet as a proxy for the bulk rock major element composition it becomes apparent that strong LREE enrichment in garnet is restricted to highly depleted lithologies, whereas flat or positive LREE–MREE slopes are limited to less depleted rocks. For lherzolitic garnet inclusions, there is a positive relation between equilibration temperature, enrichment in MREE, HREE and other HFSE (Ti, Zr, Y), and decreasing depletion in major elements. For harzburgitic garnets, relations are not linear, but it appears that lherzolite style enrichment in MREE–HREE only occurs at temperatures above 1150–1200 °C, whereas strong enrichment in Sr is absent at these high temperatures. These observations suggest a transition from melt metasomatism (typical for the lherzolitic sources) characterized by fairly unfractionated trace and major element compositions to metasomatism by CHO fluids carrying primarily incompatible trace elements. Melt and fluid metasomatism are viewed as a compositional continuum, with residual CHO fluids resulting from primary silicate or carbonate melts in the course of fractional crystallization and equilibration with lithospheric host rocks.

Eclogitic garnet inclusions show “normal” REEN patterns, with LREE at about 1× and HREE at about 30× chondritic abundance. Clinopyroxenes approximately mirror the garnet patterns, being enriched in LREE and having chondritic HREE abundances. Positive and negative Eu anomalies are observed for both garnet and clinopyroxene inclusions. Such anomalies are strong evidence for crustal precursors for the eclogitic diamond sources. The trace element composition of an “average eclogitic diamond source” based on garnet and clinopyroxene inclusions is consistent with derivation from former oceanic crust that lost about 10% of a partial melt in the garnet stability field and that subsequently experienced only minor reenrichment in the most incompatible trace elements. Based on individual diamonds, this simplistic picture becomes more complex, with evidence for both strong enrichment and depletion in LREE.

Trace element data for sublithospheric inclusions in diamonds are less abundant. REE in majoritic garnets indicate source compositions that range from being similar to lithospheric eclogitic sources to strongly LREE enriched. Lower mantle sources, assessed based on CaSi–perovskite as the principal host for REE, are not primitive in composition but show moderate to strong LREE enrichment. The bulk rock LREEN–HREEN slope cannot be determined from CaSi–perovskites alone, as garnet may be present in these shallow lower mantle sources and then would act as an important host for HREE. Positive and negative Eu anomalies are widespread in CaSi–perovskites and negative anomalies have also been observed for a majoritic garnet and a coexisting clinopyroxene inclusion. This suggests that sublithospheric diamond sources may be linked to old oceanic slabs, possibly because only former crustal rocks can provide the redox gradients necessary for diamond precipitation in an otherwise reduced sublithospheric mantle.  相似文献   

104.
鄂东南地区铜山口花岗闪长斑岩体是与斑岩铜钼矿床共生的岩体,但殷祖花岗闪长岩体是与金属成矿无关的岩体。铜山口和殷祖侵入岩的元素地球化学特征与埃达克岩的地球化学特征非常类似,如高Al2O3、Sr含量与La/Yb、Sr/Y比值,富Na2O(Na2O/K2O>1.0),亏损Y与Yb,极弱负Eu异常-正Eu异常以及正Sr异常等。但是铜山口和殷祖侵入岩也存在 明显的差别:前者比后者更偏酸性,但具有较高的K2O,MgO,Cr,Ni和Sr含量,较低的Y和Yb含量,轻重稀土元素分异更明显,并主要显示出正铕异常,区别于后者的极弱负Eu异常-不明显Eu异常。这表明铜山口埃达克质侵入岩的岩浆来源可能比殷祖埃达克质侵入岩的岩浆来源更深:前者可能由拆沉的下地壳熔融形成,残留物主要含石榴子石;而后者可能由增厚的下地壳熔融形成,残留物可能为石榴子石±斜长石±角闪石。另外,热的地幔上涌,底辟(diapir)进入下地壳,导致含角闪石的榴辉岩发生熔融也可形成铜山口埃达克质岩浆。铜山口埃达克质岩浆在穿过地幔的过程中,将会与地幔橄榄岩发生交换反应:一方面由于受橄榄岩的混染而使得岩浆的MgO,Cr和Ni增高;另一方面岩浆中的Fe2O3不断加入到地幔中,导致地幔的氧逸度(fo2)增高,地幔中金属硫化物被氧化并进入岩浆中,富含Cu-Mo等成矿物质的岩浆上升很容易形成斑岩铜钼矿  相似文献   
105.
The reflecting events from Moho and other interfaces within the crust are recognized from the wavefield characteristics of P- and S-wave for the 480km long wide-angle seismic profile between Peigu Tso and Pumoyong Tso. Then, seismic crustal structures of P- and S-wave velocities and Poisson ratio under the nearly east-west profile in southern Tibet are interpreted by fitting the observed traveltimes with the calculated ones by forward modelling. Our interpreting results demonstrate that the crustal thickness varies remarkably in the east-west direction, showing a pattern that the crust could be divided into three parts bounded by the west of Dingri and the east of Dinggyê, respectively, where the depth of Moho is about 71km for the western part, about 76km for the middle and about 74km for the eastern. There is one lower velocity layer (LVL) at the bottom of the upper crust with depth of 20-30 km. One of the distinct features is that the thickness of LVL abruptly thins from 24km on the west to 6km on the east. The other is that the velocity variation in the crust along east-west direction for both P- and S-wave displays a feature as quasi-periodic variation. The lower velocity (compared to the average value for the continent of the globe) in the lower crust and three sets of north-southward active normal faults are probably attributed to the coupling process of material delamination in the lower crust, crustal thicking and east-westward escape of the crustal material accompanied with the continental collision between India and Eurasia Plate.  相似文献   
106.
The intraplate Ancestral Rocky Mountains of western North America extend from British Columbia, Canada, to Chihuahua, Mexico, and formed during Early Carboniferous through Early Permian time in response to continent–continent collision of Laurentia with Gondwana—the conjoined masses of Africa and South America, including Yucatán and Florida. Uplifts and flanking basins also formed within the Laurentian Midcontinent. On the Gondwanan continent, well inboard from the marginal fold belts, a counterpart structural array developed during the same period. Intraplate deformation began when full collisional plate coupling had been achieved along the continental margin; the intervening ocean had been closed and subduction had ceased—that is, the distinction between upper versus lower plates became moot. Ancestral Rockies deformation was not accompanied by volcanism. Basement shear zones that formed during Mesoproterozoic rifting of Laurentia were reactivated and exerted significant control on the locations, orientations, and modes of displacement on late Paleozoic faults.Ancestral Rocky Mountain uplifts extend as far south as Chihuahua and west Texas (28° to 33°N, 102° to 109°W) and include the Florida-Moyotes, Placer de Guadalupe–Carrizalillo, Ojinaga–Tascotal and Hueco Mountain blocks, as well as the Diablo and Central Basin Platforms. All are cored with Laurentian Proterozoic crystalline basement rocks and host correlative Paleozoic stratigraphic successions. Pre-late Paleozoic deformational, thermal, and metamorphic histories are similar as well. Southern Ancestral Rocky Mountain structures terminate along a line that trends approximately N 40°E (present coordinates), a common orientation for Mesoproterozoic extensional structures throughout southern to central North America.Continuing Tien Shan intraplate deformation (Central Asia) has created an analogous array of uplifts and basins in response to the collision of India with Eurasia, beginning in late Miocene time when full coupling of the colliding plates had occurred. As in the Laurentia–Gondwana case, structures of similar magnitude and spacing to those in Eurasia have developed in the Indian plate. Within the present orogen two ancient suture zones have been reactivated—the early Paleozoic Terskey zone and the late Paleozoic Turkestan suture between the Siberian and East Gondwanan cratons. Inverted Proterozoic to early Paleozoic rift structures and passive-margin deposits are exposed north of the Terskey zone. In the Alay and Tarim complexes, Vendian to mid-Carboniferous passive-margin strata and the subjacent Proterozoic crystalline basement have been uplifted. Data on Tien Shan uplifts, basins, structural arrays, and deformation rates guide paleotectonic interpretations of ancient intraplate mountain belts. Similarly, exhumed deep crustal shear zones in the Ancestral Rockies offer insight into partitioning and reorientation of strain during contemporary intraplate deformation.  相似文献   
107.
The Archean lithospheric mantle beneath the Kaapvaal–Zimbabwe craton of Southern Africa shows ±1% variations in seismic P-wave velocity at depths within the diamond stability field (150–250 km) that correlate regionally with differences in the composition of diamonds and their syngenetic inclusions. Seismically slower mantle trends from the mantle below Swaziland to that below southeastern Botswana, roughly following the surface outcrop pattern of the Bushveld-Molopo Farms Complex. Seismically slower mantle also is evident under the southwestern side of the Zimbabwe craton below crust metamorphosed around 2 Ga. Individual eclogitic sulfide inclusions in diamonds from the Kimberley area kimberlites, Koffiefontein, Orapa, and Jwaneng have Re–Os isotopic ages that range from circa 2.9 Ga to the Proterozoic and show little correspondence with these lithospheric variations. However, silicate inclusions in diamonds and their host diamond compositions for the above kimberlites, Finsch, Jagersfontein, Roberts Victor, Premier, Venetia, and Letlhakane do show some regional relationship to the seismic velocity of the lithosphere. Mantle lithosphere with slower P-wave velocity correlates with a greater proportion of eclogitic versus peridotitic silicate inclusions in diamond, a greater incidence of younger Sm–Nd ages of silicate inclusions, a greater proportion of diamonds with lighter C isotopic composition, and a lower percentage of low-N diamonds whereas the converse is true for diamonds from higher velocity mantle. The oldest formation ages of diamonds indicate that the mantle keels which became continental nuclei were created by middle Archean (3.2–3.3 Ga) mantle depletion events with high degrees of melting and early harzburgite formation. The predominance of sulfide inclusions that are eclogitic in the 2.9 Ga age population links late Archean (2.9 Ga) subduction-accretion events involving an oceanic lithosphere component to craton stabilization. These events resulted in a widely distributed younger Archean generation of eclogitic diamonds in the lithospheric mantle. Subsequent Proterozoic tectonic and magmatic events altered the composition of the continental lithosphere and added new lherzolitic and eclogitic diamonds to the already extensive Archean diamond suite.  相似文献   
108.
A suite of 14 diamond-bearing and 3 diamond-free eclogite xenoliths from the Newlands kimberlite, South Africa, have been studied using the Re–Os isotopic system to provide constraints on the age and possible protoliths of eclogites and diamonds. Re concentrations in diamond-bearing eclogites are variable (0.03–1.34 ppb), while Os concentrations show a much more limited range (0.26–0.59 ppb). The three diamond-free eclogites have Re and Os concentrations that are at the extremes of the range of their diamond-bearing counterparts. 187Os/188Os ranges from 0.1579 to 1.4877, while 187Re/188Os varies from 0.54 to 26.2 in the diamond-bearing eclogites. The highly radiogenic Os in the diamond-bearing eclogites (γOs=23–1056) is consistent with their high 187Re/188Os and requires long-term isolation from the convecting mantle. Re–Os model ages for 9 out of 14 diamond-bearing samples lie between 3.08 and 4.54 Ga, in agreement with FTIR spectra of Newlands diamonds that show nitrogen aggregation states consistent with diamond formation in the Archean. Re–Os isochron systematics for the Newlands samples do not define a precise isochron relationship, but lines drawn between subsets of the data provide ages ranging from 2.9 to 4.1 Ga, all of which are suggestive of formation in the Archean. The Re–Os systematics combined with mineral chemistry and stable isotopic composition of the diamond-bearing eclogites are consistent with a protolith that has interacted with surficial environments. Therefore, the favored model for the origin of the Newlands diamond-bearing eclogites is via subduction. The most likely precursors for the Kaapvaal eclogites include komatiitic ocean ridge products or primitive portions of oceanic plateaus or ocean islands.  相似文献   
109.
Four years of recording global earthquakes using a broadband seismometer located at the Ekati diamond mine revealed variations with earthquake azimuth in the arrival of SKS phases. These variations can be modeled assuming two distinct layers of anisotropy in the lithosphere. The lower layer probably lies in the mantle, and the anisotropy aligns with both North American plate motion and the strike of mantle structures identified by previous conductivity and geochemical analyses, at ˜N50°E. The upper layer is hypothesized to result from regional structures in the uppermost mantle and the crust; these trends are distinct from the mantle trends.  相似文献   
110.
中国埃达克岩或埃达克质岩及相关金属成矿作用   总被引:3,自引:2,他引:3  
本文概述了近年(2003~2006)来中国埃达克岩或埃达克质岩及相关金属成矿作用研究的一些主要进展,主要包括岩石的分布、分类、构造背景、成因,以及一些相关的岩石组合、成矿、实验岩石学和动力学意义等。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号